
OWASP 2

Agenda

Necessary Introductions

Fuzzing Motivation

Selenium IDE

Apparatus & Benchmarks

Building Test Cases

Oxygen: Scripting Test Cases

Demos, Videos, Examples

Conclusions

Q&A



OWASP

Necessary Introductions

Yiannis Pavlosoglou, Seleucus Ltd, London

OWASP Industry Committee

Author of JBroFuzz

PhD, CISSP, ...

Disclaimer: This presentation has nothing to do with 
selenium as a substance, nor its benefits

(got a couple strange emails lately)

Instead, we are discussing Selenium IDE and the security 
testing of software, namely web applications

3



OWASP 4

Motivation

 [Web Application] Flows are hard to define and track in 
modern applications that use frames and AJAX [1]

Basic Authentication

Login Credentials

Cross Site Scripting!New Password

Change Password

• How do we best identify such 

an issue?
(check your job description)

• How do we best automate the 

identification of  such 

an issue?
(perhaps check these slides)





OWASP

Stateful Fuzzing

Newly issued cookies

Cookies / AJAX

ViewState

Stateless tool examples:
SqlNinja

 JBroFuzz

 ...

Stateful tools ability:
Recording of user login

Chaining of user actions

Fuzzing

Web 
Application 

Fuzzing

Stateful
Fuzzing

Stateless 
Fuzzing

5

Stateless: Tools that do not 

orchestrate state transversal in 

web applications



OWASP

Selenium IDE

Well known tool for:

Acceptance testing

Regression testing

Software testing

...

Penetration testing?
(in certain situations)

Components:
Selenium IDE

Selenium-RC (Remote 
Control)

Selenium Grid

6



OWASP

Selenium IDE UI

Plug-in for a number of 
supported browsers
O/S Independent

Records a test case, 
while user is browsing
User clicks, inputs, radio 

button selections, etc.

Tests the case for one 
or more condition
e.g. does this text exist?

7



OWASP

Selenium IDE

8



OWASP 9

Using Selenium IDE: Apparatus

 Operating System of your choice
 Confirmed operations in: Solaris 10, Windows 7, Fedora 11, Ubuntu 9.10

 Proxy Tool of your choice
 WebScarab, OWASP Proxy

 Language of your choice
 Perl, v5.10.0 built for MSWin32-x86-multi-thread

 Selenium IDE
 Firefox plug-in Selenium IDE 1.0 Beta 2 (June 3, 2008)

 Mozilla Firefox 
 3.5.7

 Tests herein, performed on: WebGoat 5.3 RC1
 I know! But recordings from penetration tests performed, are not really an option
 Unlike a screenshot, with Selenium IDE, you can‟t just obfuscate the URL!



OWASP 10

Using Selenium IDE: Benchmarks

Assessing Selenium IDE for Web Application 
Penetration Testing Requirements

Benchmark 1: Can I leave it testing overnight?

Benchmark 2: Can I know all the payloads that 
passed / failed a particular input field?



OWASP

Using Selenium IDE: Demo Videos

11

Demo 1 Video: Login Brute Force

http://www.youtube.com/watch?v=3_LhYkzzN08
Demo 2 Video: SQL Injection

http://www.youtube.com/watch?v=6m0bq5hF_6w

As you’re here, we’ll do the demos live ($%£^&*!) …



OWASP

Selenium IDE: Benchmark 1

Given a login prompt:

Not necessarily a first landing page

A valid user account

No lockout present

Perform a brute-force attack

Long list of passwords

Objective: Quickly assess successful / failed 
logins



OWASP

Selenium IDE: Benchmark 2

Given an input field:

A page that you have to browse to

Check for all SQL injection payloads

Objective: Quickly assess which SQL injection 
payloads succeed 

(don’t just report back a SQL injection vulnerability)

(We want to know all filter evasion characters 

& successful payloads)





OWASP

Building Test Cases: Workflow Process

Record Basic Test Case

Determine Success/Fail Criterion

Decide on Payloads to Test

Generate Test Case Suite File

Run!

14



OWASP 15

Record Basic Test Case

Using your browser & Selenium IDE

Record your actions

Select input field to automate testing

Specify a unique value

Could be: parameter, form field, GET/POST, etc.

Could not be: Referrer, Header, etc.*

[*] You could use Selenium-RC for implementing advanced 
features, outside standard browser operations



OWASP

Determine Success / Fail Criterion

Something must be present within the 
page/response that:

Distinguishes a successful attack from an 
unsuccessful one

Is unique

Can be tough!

Not really a technique for starters in the field:

 Know your payloads

 know your platforms

 know your responses

Know if this technique can be used for the attack in 
question



OWASP

Decide on Payloads to Test



OWASP

Scale: Generate Test Case Suite File

For each of the test cases

Generate a single suite

Group together all the test cases

Into one entity

Allows you to obtain success / fail results

Batch process all test cases



OWASP 19

Scripting Test Cases

To run oxygen.pl, make sure you have the 
following files:

00-challenge-login.xml

00-nitro.pl

00-oxygen.pl

00-payloads.txt 

Run nitro.pl, only having executed oxygen.pl 
successfully, it should generate a file:

000-test-case-suite.xml

Another demo ($%£^&*!) …



OWASP

Example 1: HTTP Form-field Brute-forcing

Basic Test Case

Test Case

List of Passwords 

Test Case Suite

Many other, simpler, 
ways to perform a 
brute-force attack

20



OWASP

HTTP Form-field Brute-forcing (1/2)

Basic Test Case

Open the URL

Type „username‟

Type „password‟

Wait...

Verify the text: 
“* Invalid login”

21



OWASP

HTTP Form-field Brute-forcing (2/2)

Basic Test Case

Open the URL

Type „username‟

Type „password‟

Wait...

Verify the text: 
“* Invalid login”

Success if “Invalid 
login”  is obtained...

22



OWASP

Lessons Learned

Timing is Everything

Number of hops / Load-balancing

Trace route information

Delays in the response

In the same way that you (should) check for 
max_rtt_timeouts in nmap

Check for all the above during stateful fuzzing 
sessions with Selenium IDE

23



OWASP 24

Stateful Vulnerability Format

Before Selenium, I could give you only a 
stateless vulnerability in the format of 
.jbrofuzz files

Now, I can just give you a single Selenium IDE 
xml file with the test case file that is causing all 
the damage!

“Here is the file, open it, run it, graph the result, 
see the vulnerability.”



OWASP

When not to use Selenium & Oxygen

Heavy XSRF Protections Present

CAPTCHA Present

Threading: Non sequential order fuzzing

Testing of Headers
Referrer Type Fields

HTTP Splitting

Read: “To Automate or Not to Automate? That is 
the Question!”[2]

25



OWASP 26

Conclusions

 It looks very good
 Saves a lot of testing time
 Should be calibrated correctly
 Does not replace human testing

 You should have an understanding of:

What it takes to script up a Selenium Test Case
(stateful penetration testing cases)

How to use Oxygen and Nitro with Selenium IDE
(simple Perl scripting, try it in your language!)

When not to consider using Selenium in Security
(when there is more than input validation && state involved)



OWASP

Questions?

Dr Yiannis Pavlosoglou

Project Leader / Industry 
Committee

Seleucus Ltd
yiannis@owasp.org



OWASP

References

28

[1] Noa Bar-Yosef, “Business Logic Attacks – BATs and BLBs”, Benelux 2009 

Presentation, 2009

[2] http://seleniumhq.org/docs/01_introducing_selenium.html#to-automate-or-not-to-

automate-that-is-the-question



OWASP

Step-by-step Guide (1/2)

29

1.0 Create a test case: 00-challenge-login.xml

1.1 Within the test case, record the field, parameter, value that you would like to fuzz as: 

sel-oxygen-nitro

1.2 After the response is received, right-click within your browser on something unique 

(can be tough) and select "Verify Text Present"

1.3 In Selenium IDE, select "Save Test Case"

1.4 Select as name: 00-challenge-login.xml

1.5 Save in a dedicated, clean folder for each test case, e.g. 02-sql-injection

2.0 Folder setup: 02-sql-injection

2.1 Create a 00-payloads.txt file, put inside, one payload per line, each SQL injection 

payload you would like to test for



OWASP

Step-by-step Guide (2/2)

30

2.2 Copy oxygen.pl to the directory, run it by: perl oxygen.pl

2.3 A number of test cases will be generated e.g. 

3.0 Bring in Nitro!

3.1 Copy nitro.pl to the directory, run it by: perl nitro.pl 

3.2 This will generate the output test case suite in selenium

4.0 Load and run in Selenium IDE

4.1 In Selenium IDE: File -> Open Test Suite: main-test-suite.xml

4.2 Set speed to slow (you can always speed it up during testing)

4.3 Run!



OWASP

Simple Source Code: oxygen.pl

#!/usr/local/bin/perl
#
# Program to take a single test case from selenium 

and substitute the 
# input value marked as 'sel-oxygen-nitro' to a list 

of potential 
# payloads read from file.
#
$initial_test_case = "00-challenge-login.xml";
$location_to_fuzz = "sel-oxygen-nitro";
$payloads_file = "00-payloads.txt";

# Read file the initial selenium test case file
#
open(INFO, $initial_test_case) || die "Couldn't read 

from file: $!\n";
@lines = <INFO>;
close(INFO);
# for later -v .. print @lines;

# Loop through the password files given as a 
starting brute force

#

open(FILEPWD, "<$payloads_file") || die "Could not 
find payloads file: $!\n";

$count = 1;
while (<FILEPWD>) {

chomp;
$pwd = $_;
print "Count is: " . $count . " pwd is: " . $pwd . 
"\n";
# for -v later.. print $pwd . "\n";
open(FILEWRITE, "> " . $count . 
$initial_test_case);
# Loop through the lines of the initial test case
# generating one file, per password
foreach $line(@lines){

$new_line = $line;
$new_line =~ 

s/$location_to_fuzz/$pwd/g;
print FILEWRITE $new_line ;
# -v -v later print $new_line;

}
close FILEWRITE;
$count++;

}
close FILEPWD;

31



OWASP

Simple Source Code: nitro.pl

#!/usr/local/bin/perl
#
# Program to generate the output test suite in selenium
# given the original test case and the payloads file
#
# Some notes:
#  You need to have executed oxygen.pl before running this
#
#  The payloads file must have the same length as when 
#  running oxygen.pl
#
$initial_test_case = '00-challenge-login.xml';
$payloads_file = '00-payloads.txt';

open(FILEWRITE, "> 000-main-test-suite.xml");

print FILEWRITE "<?xml version=\"1.0\" encoding=\"UTF-
8\"?>\n";

print FILEWRITE "<!DOCTYPE html PUBLIC \"-//W3C//DTD 
XHTML 1.0 Strict//EN\" 
\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-
strict.dtd\">\n";

print FILEWRITE "<html 
xmlns=\"http://www.w3.org/1999/xhtml\" 
xml:lang=\"en\" lang=\"en\">\n";

print FILEWRITE "<head>\n";
print FILEWRITE "  <meta content=\"text/html; charset=UTF-

8\" http-equiv=\"content-type\" />\n";

print FILEWRITE "  <title>Test Suite</title>\n";
print FILEWRITE "</head>\n";
print FILEWRITE "<body>\n";
print FILEWRITE "<table id=\"suiteTable\" 

cellpadding=\"1\" cellspacing=\"1\" 
border=\"1\" class=\"selenium\"><tbody>\n";

print FILEWRITE "<tr><td><b>Test 
Suite</b></td></tr>\n";

open(FILEPWD, "<$payloads_file") || die "Could not 
find payloads file: $!\n";

$count = 1;
while (<FILEPWD>) {

print FILEWRITE "<tr><td><a href=\"" . 
$count . $initial_test_case . "\">" . $count . 
$initial_test_case . "</a></td></tr>\n";
$count++;

}

print FILEWRITE "</tbody></table>\n";
print FILEWRITE "</body>\n";
print FILEWRITE "</html>\n";

close(FILEWRITE);

32




