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Necessary Introductions

Yiannis Pavlosoglou, Seleucus Ltd, London

OWASP Industry Committee

Author of JBroFuzz

PhD, CISSP, ...

Disclaimer: This presentation has nothing to do with 
selenium as a substance, nor its benefits

(got a couple strange emails lately)

Instead, we are discussing Selenium IDE and the security 
testing of software, namely web applications
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Motivation

 [Web Application] Flows are hard to define and track in 
modern applications that use frames and AJAX [1]

Basic Authentication

Login Credentials

Cross Site Scripting!New Password

Change Password

• How do we best identify such 

an issue?
(check your job description)

• How do we best automate the 

identification of  such 

an issue?
(perhaps check these slides)





OWASP

Stateful Fuzzing

Newly issued cookies

Cookies / AJAX

ViewState

Stateless tool examples:
SqlNinja

 JBroFuzz

 ...

Stateful tools ability:
Recording of user login

Chaining of user actions

Fuzzing

Web 
Application 

Fuzzing

Stateful
Fuzzing

Stateless 
Fuzzing
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Stateless: Tools that do not 

orchestrate state transversal in 

web applications
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Selenium IDE

Well known tool for:

Acceptance testing

Regression testing

Software testing

...

Penetration testing?
(in certain situations)

Components:
Selenium IDE

Selenium-RC (Remote 
Control)

Selenium Grid
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Selenium IDE UI

Plug-in for a number of 
supported browsers
O/S Independent

Records a test case, 
while user is browsing
User clicks, inputs, radio 

button selections, etc.

Tests the case for one 
or more condition
e.g. does this text exist?
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Selenium IDE
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Using Selenium IDE: Apparatus

 Operating System of your choice
 Confirmed operations in: Solaris 10, Windows 7, Fedora 11, Ubuntu 9.10

 Proxy Tool of your choice
 WebScarab, OWASP Proxy

 Language of your choice
 Perl, v5.10.0 built for MSWin32-x86-multi-thread

 Selenium IDE
 Firefox plug-in Selenium IDE 1.0 Beta 2 (June 3, 2008)

 Mozilla Firefox 
 3.5.7

 Tests herein, performed on: WebGoat 5.3 RC1
 I know! But recordings from penetration tests performed, are not really an option
 Unlike a screenshot, with Selenium IDE, you can‟t just obfuscate the URL!
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Using Selenium IDE: Benchmarks

Assessing Selenium IDE for Web Application 
Penetration Testing Requirements

Benchmark 1: Can I leave it testing overnight?

Benchmark 2: Can I know all the payloads that 
passed / failed a particular input field?
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Using Selenium IDE: Demo Videos
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Demo 1 Video: Login Brute Force

http://www.youtube.com/watch?v=3_LhYkzzN08
Demo 2 Video: SQL Injection

http://www.youtube.com/watch?v=6m0bq5hF_6w

As you’re here, we’ll do the demos live ($%£^&*!) …
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Selenium IDE: Benchmark 1

Given a login prompt:

Not necessarily a first landing page

A valid user account

No lockout present

Perform a brute-force attack

Long list of passwords

Objective: Quickly assess successful / failed 
logins
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Selenium IDE: Benchmark 2

Given an input field:

A page that you have to browse to

Check for all SQL injection payloads

Objective: Quickly assess which SQL injection 
payloads succeed 

(don’t just report back a SQL injection vulnerability)

(We want to know all filter evasion characters 

& successful payloads)


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Building Test Cases: Workflow Process

Record Basic Test Case

Determine Success/Fail Criterion

Decide on Payloads to Test

Generate Test Case Suite File

Run!
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Record Basic Test Case

Using your browser & Selenium IDE

Record your actions

Select input field to automate testing

Specify a unique value

Could be: parameter, form field, GET/POST, etc.

Could not be: Referrer, Header, etc.*

[*] You could use Selenium-RC for implementing advanced 
features, outside standard browser operations



OWASP

Determine Success / Fail Criterion

Something must be present within the 
page/response that:

Distinguishes a successful attack from an 
unsuccessful one

Is unique

Can be tough!

Not really a technique for starters in the field:

 Know your payloads

 know your platforms

 know your responses

Know if this technique can be used for the attack in 
question
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Decide on Payloads to Test
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Scale: Generate Test Case Suite File

For each of the test cases

Generate a single suite

Group together all the test cases

Into one entity

Allows you to obtain success / fail results

Batch process all test cases
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Scripting Test Cases

To run oxygen.pl, make sure you have the 
following files:

00-challenge-login.xml

00-nitro.pl

00-oxygen.pl

00-payloads.txt 

Run nitro.pl, only having executed oxygen.pl 
successfully, it should generate a file:

000-test-case-suite.xml

Another demo ($%£^&*!) …
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Example 1: HTTP Form-field Brute-forcing

Basic Test Case

Test Case

List of Passwords 

Test Case Suite

Many other, simpler, 
ways to perform a 
brute-force attack
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HTTP Form-field Brute-forcing (1/2)

Basic Test Case

Open the URL

Type „username‟

Type „password‟

Wait...

Verify the text: 
“* Invalid login”
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HTTP Form-field Brute-forcing (2/2)

Basic Test Case

Open the URL

Type „username‟

Type „password‟

Wait...

Verify the text: 
“* Invalid login”

Success if “Invalid 
login”  is obtained...
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Lessons Learned

Timing is Everything

Number of hops / Load-balancing

Trace route information

Delays in the response

In the same way that you (should) check for 
max_rtt_timeouts in nmap

Check for all the above during stateful fuzzing 
sessions with Selenium IDE
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Stateful Vulnerability Format

Before Selenium, I could give you only a 
stateless vulnerability in the format of 
.jbrofuzz files

Now, I can just give you a single Selenium IDE 
xml file with the test case file that is causing all 
the damage!

“Here is the file, open it, run it, graph the result, 
see the vulnerability.”
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When not to use Selenium & Oxygen

Heavy XSRF Protections Present

CAPTCHA Present

Threading: Non sequential order fuzzing

Testing of Headers
Referrer Type Fields

HTTP Splitting

Read: “To Automate or Not to Automate? That is 
the Question!”[2]
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Conclusions

 It looks very good
 Saves a lot of testing time
 Should be calibrated correctly
 Does not replace human testing

 You should have an understanding of:

What it takes to script up a Selenium Test Case
(stateful penetration testing cases)

How to use Oxygen and Nitro with Selenium IDE
(simple Perl scripting, try it in your language!)

When not to consider using Selenium in Security
(when there is more than input validation && state involved)
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Questions?

Dr Yiannis Pavlosoglou

Project Leader / Industry 
Committee

Seleucus Ltd
yiannis@owasp.org
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Step-by-step Guide (1/2)
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1.0 Create a test case: 00-challenge-login.xml

1.1 Within the test case, record the field, parameter, value that you would like to fuzz as: 

sel-oxygen-nitro

1.2 After the response is received, right-click within your browser on something unique 

(can be tough) and select "Verify Text Present"

1.3 In Selenium IDE, select "Save Test Case"

1.4 Select as name: 00-challenge-login.xml

1.5 Save in a dedicated, clean folder for each test case, e.g. 02-sql-injection

2.0 Folder setup: 02-sql-injection

2.1 Create a 00-payloads.txt file, put inside, one payload per line, each SQL injection 

payload you would like to test for
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Step-by-step Guide (2/2)
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2.2 Copy oxygen.pl to the directory, run it by: perl oxygen.pl

2.3 A number of test cases will be generated e.g. 

3.0 Bring in Nitro!

3.1 Copy nitro.pl to the directory, run it by: perl nitro.pl 

3.2 This will generate the output test case suite in selenium

4.0 Load and run in Selenium IDE

4.1 In Selenium IDE: File -> Open Test Suite: main-test-suite.xml

4.2 Set speed to slow (you can always speed it up during testing)

4.3 Run!
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Simple Source Code: oxygen.pl

#!/usr/local/bin/perl
#
# Program to take a single test case from selenium 

and substitute the 
# input value marked as 'sel-oxygen-nitro' to a list 

of potential 
# payloads read from file.
#
$initial_test_case = "00-challenge-login.xml";
$location_to_fuzz = "sel-oxygen-nitro";
$payloads_file = "00-payloads.txt";

# Read file the initial selenium test case file
#
open(INFO, $initial_test_case) || die "Couldn't read 

from file: $!\n";
@lines = <INFO>;
close(INFO);
# for later -v .. print @lines;

# Loop through the password files given as a 
starting brute force

#

open(FILEPWD, "<$payloads_file") || die "Could not 
find payloads file: $!\n";

$count = 1;
while (<FILEPWD>) {

chomp;
$pwd = $_;
print "Count is: " . $count . " pwd is: " . $pwd . 
"\n";
# for -v later.. print $pwd . "\n";
open(FILEWRITE, "> " . $count . 
$initial_test_case);
# Loop through the lines of the initial test case
# generating one file, per password
foreach $line(@lines){

$new_line = $line;
$new_line =~ 

s/$location_to_fuzz/$pwd/g;
print FILEWRITE $new_line ;
# -v -v later print $new_line;

}
close FILEWRITE;
$count++;

}
close FILEPWD;
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Simple Source Code: nitro.pl

#!/usr/local/bin/perl
#
# Program to generate the output test suite in selenium
# given the original test case and the payloads file
#
# Some notes:
#  You need to have executed oxygen.pl before running this
#
#  The payloads file must have the same length as when 
#  running oxygen.pl
#
$initial_test_case = '00-challenge-login.xml';
$payloads_file = '00-payloads.txt';

open(FILEWRITE, "> 000-main-test-suite.xml");

print FILEWRITE "<?xml version=\"1.0\" encoding=\"UTF-
8\"?>\n";

print FILEWRITE "<!DOCTYPE html PUBLIC \"-//W3C//DTD 
XHTML 1.0 Strict//EN\" 
\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-
strict.dtd\">\n";

print FILEWRITE "<html 
xmlns=\"http://www.w3.org/1999/xhtml\" 
xml:lang=\"en\" lang=\"en\">\n";

print FILEWRITE "<head>\n";
print FILEWRITE "  <meta content=\"text/html; charset=UTF-

8\" http-equiv=\"content-type\" />\n";

print FILEWRITE "  <title>Test Suite</title>\n";
print FILEWRITE "</head>\n";
print FILEWRITE "<body>\n";
print FILEWRITE "<table id=\"suiteTable\" 

cellpadding=\"1\" cellspacing=\"1\" 
border=\"1\" class=\"selenium\"><tbody>\n";

print FILEWRITE "<tr><td><b>Test 
Suite</b></td></tr>\n";

open(FILEPWD, "<$payloads_file") || die "Could not 
find payloads file: $!\n";

$count = 1;
while (<FILEPWD>) {

print FILEWRITE "<tr><td><a href=\"" . 
$count . $initial_test_case . "\">" . $count . 
$initial_test_case . "</a></td></tr>\n";
$count++;

}

print FILEWRITE "</tbody></table>\n";
print FILEWRITE "</body>\n";
print FILEWRITE "</html>\n";

close(FILEWRITE);
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